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Abstract

This paper presents a comparison of two approaches to the problem of single-agent real-time
motion planning in a highly dynamic environment with a large number of obstacles. The first
approach builds upon the notion of a probabilistic roadmap (PRM), while the second utilizes
the concept of a rapidly-exploring random tree (RRT). Each approach is implemented inside
a game and compared on the basis of computational runtime, as well as a number of metrics
evaluating the effectiveness of the plans generated. Experimental results found that the PRM-
based approach was faster and more effective than the RRT-based approach, in all metrics. A
discussion of the possible reasons for this difference entails.

1 Introduction

Within the fields of robotics and Game AI, planning an agent’s path through an environment is
a common task. The agent, with some amount of knowledge about its environment, must decide
how it’s going to move through that environment, typically with the purpose of reaching a goal of
a specific location within the environment. In these situations it is critical that the agent choose
its path such that it does not risk collision with anything within the environment. If, for example,
a robotic car is driving on the road, it is critical that the car avoids all obstacles present in the
environment.

Although self-driving cars are only beginning to move beyond the realm of academia, robots
are already in widespread use within the world of manufacturing. Much in the same way that
cars must, an AI designed to play a real-time game must be able to navigate intelligently through
the environment of that game. This make the form of nonplayer characters walking through the
player’s environment, or perhaps that of an agent taking the role of a player in a game where
the core of the game is obstacle avoidance. In both of these examples, the agent faces a variety
environmental hazards, commonly referred to as obstacles, that may be either static or dynamic
with respect to time. Understanding whether the obstacles will be only static or whether that may
also be dynamic is crucial to successful motion planning.

For the example of a self-driving car, suppose the car assumed all obstacles in the environment
it’s driving through were static. At an intersection, it may observe a crossing car that’s not yet
directly in front of it, plan to drive through the perceived open space, and begin to execute that
plan. The the car does not recompute its plan soon enough, it very well may crash into the car
crossing the intersection, as it was a dynamic obstacle, not a static one.
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If the obstacles in an environment are all static with respect to time, this environment can be
planned over in its most natural physical representation - in either two dimensions or three di-
mensions. So for a two-dimensional environment with static obstacles, the agent must only plan a
series of two-dimensional locations within the environment. However, if the obstacles are known to
be dynamic, changing environmental position over time, time itself must be added as a dimension
for the path planning. With the increase in dimensionality of the problem, the complexity (and
thus the necessary computation) of the problem also rises. This leads to the concept of a space-
time environment for planning, where dynamic obstacle velocities are captured by the spacetime
representations of those obstacles. For example, a circular obstacle moving at a constant velocity
through a two-dimensional environment becomes a three-dimensional slanted cylinder.

Once the environment is characterized, the actual planning must be performed. There are a
variety of techniques for doing this - this paper examines two in particular: a probabilistic roadmap
(PRM)-based weighted A* search, and a rapidly exploring random tree (RRT)-based approach.
After a brief description of the exact problem at hand, the body of work related to this problem
will be discussed in Section 2. The approach implemented for this paper will be detailed in Section
3. Experiments conducted, their results, and analysis of those results will be presented in Sections
4 and 5. Final conclusions will be drawn and future work will be discussed in Section 6.

1.1 Problem Description

This paper will deal with the specific problem of single-agent motion planning and obstacle avoid-
ance within the highly dynamic environment of a video game. The environment the agent must
move through will be two-dimensional, and will only have dynamic obstacles. The dynamic obsta-
cles come in the forms of various enemies that spawn near the top of the environment, then proceed
to launch patterns of circular bullets around the environment, while moving towards the bottom
or sides of the screen. All dynamic obstacles in this environment move at a constant velocity once
they appear. If the agent touches any of the enemies or their bullets, it loses the game. Its goal
is to survive for as long possible without getting hit by any obstacles. While avoiding obstacles,
it will also have a sequence of randomly generated goal locations to reach. The pattern the ene-
mies appear in is always the same for consistency, however, for the agent the environment and its
obstacles are considered unknown until they appear on screen.

2 Related Work

A very wide variety of approaches to motion planning in dynamic environments have been proposed,
most within the context of robotics. Each approach can be evaluated on the basis of several
factors, the most relevant of which are the speed of the algorithm, the approach’s guarantees
against collisions (which is closely related to completeness and speed), and the optimality of the
solutions generated. For the problem at hand, the first priority of our agent is simply avoiding the
dynamic obstacles in the environment; the goals for the agent are secondary to survival. Thus,
speed and safety are the primary concerns of the for this agent, while optimality in reaching the
goal is secondary.

Motion planning algorithms can broadly be broken down into two categories: global planning
techniques, and local planning techniques. The global algorithms will attempt to find the entire
path from the start to the goal before the agent takes any action. The local techniques broadly
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focus on moving towards the goal while avoiding local obstacles, often not planning a full path.
One of the most common global planning approaches is using the concept of a probablistic

roadmap (PRM). Originally introduced in [5], a PRM is a graph generated randomly sampling
the configuration space in which the planning will be done. Through this random sampling, the
potentially highly dimensional continuous space is discretized, making it possible to run a graph
search algorithm such as A* to determine a valid path. However, the original conception of a PRM
alone did not account for a dynamic environment.

The concept of a PRM has since been adapted for use in a real-time dynamic environment, as
in [10]. This approach abstracts a 2D configuration space into 3D by adding a time dimension,
allowing obstacle movement to be accounted for while performing the motion planning. It also
does so using anytime D* to search over the PRM, allowing a subobtimal solution to be returned
quickly, and refining the solution as time allows.

An alternate method of discretizing a configuration space has been proposed in the form of
rapidly exploring random trees (RRTs) [7]. With this approach, a tree is incrementally built over
the configuration space by randomly sampling the space and connecting to the existing tree. Once
the tree reaches the goal, the tree can be backtracked to find the path from the start to the
goal. This original approach made paid no heed to the optimality of the solutions it generated -
it simply focused on finding a solution. Additionally, the original conception of RRTs had to be
completely recalculated if any changes in the environment occur, making it a poor fit for a dynamic
environment. Both of these issues are addressed in [2], which proposes an RRT algorithm that
is both dynamic, handling environmental changes without full recomputation, and anytime, first
providing a highly suboptimal solution quickly, then refining the solution’s optimality given more
time.

A third approach to motion planning doesn’t use the concept of a configuration space at all.
Instead, [3] introduces the notion of velocity obstacles. A velocity obstacle is the set of velocities
that, when taken by the agent, will lead to a collision with an obstacle, static or dynamic. Thus,
once the velocity obstacles are calculated for the obstacles in the dynamic environment, any velocity
outside these obstacles can be taken to guarantee collision avoidance. Sets of these ’avoidance
maneuvers’ can be chained together in a search tree to plan a full path from a start to a goal. This
approach focuses on obstacle avoidance first, with path planning as a step that can be added to
the algorithm. An extension of the notion of velocity obstacles, commonly referred to as ORCA,
provides guarantees on collision avoidance between very large number of agents [11]. It optimizes
the VO approach in several ways, and combines it with linear programming techniques to do this.
However, it makes the fundamental assumption that any obstacles that are moving are also agents
following the same algorithm. It is thus no suited to the task at hand.

Another global planning approach, with a focus on optimality, builds an algorithm around the
notion of safe time intervals for the agent [9]. A safe interval is a combination of a state configuration
and a time period without any collisions. This definition compressed potentially large periods of
time into a single state, with the goal of resulting in a smaller search tree than a more typical
space-time discretization of the configuration space. It also allows agents to remain in place as a
means of obstacle avoidance, where other approaches may detour around space-time obstacles or
even fail to find a solution. However, even though this approach outperforms other optimal motion
planning approaches, it cannot scale regarding speed as subobtimal solutions.

A variety of local obstacle-avoidance techniques have also been proposed, using notions like
artificial potential fields [6], virtual force fields [1], and kinematically-based methods [4]. However,
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although these methods all focus on producing solutions faster than is typically possible for the more
complex problem of global planning, they make a sacrifice in optimality and even completeness.
Local methods can be prone to falling into local minima and thus ultimately colliding with obstacles,
and often pay little or no heed to the optimality of the solutions they produce. One method uses
the notion of inevitable collision states to provide guarantees against collisions while doing partial
motion planning [8].

3 Approach

Two separate approaches were implemented to solve this problem: a PRM-based approach and an
RRT-based approach. Each approach was allowed an initialization phase, after which the game
was treated as continuously running, independent of the agent’s computation. In other words, the
environment was treated as being dynamic. Both approaches were implemented as additions to a
game the author had previously written using the game engine Unity12. This allowed the agent to
have full, direct knowledge of its environment, without any intermediate perception on the agent’s
part.

Both approaches make use of a spacetime representation of the environment, with only circular
obstacles. When an obstacle appears on screen, its initial position, velocity, and its radius are
recorded. The radius of the obstacle is inflated by the radius of the agent to allow the agent to
be treated as a point during planning. Each obstacle is then represented as a three-dimensional
slanted cylinder, on which tests are performed to determine whether transitions between states are
safe or not. A state is defined as a combination of a 2D position and a point in time.

3.1 Probabilistic Roadmap

This approach closely builds off of the work presented in [10]. It begins by constructing the PRM
for the 2D environment. A large number of random valid positions for the agent are generated
within the environment. Each of these positions, referred to as a node, is then connected with some
number of its nearest neighbors, using a KD-Tree for efficiency. At the end of this process, the
PRM represents a classical undirected graph of valid two-dimensional positions for the agent, and
valid transitions between those positions.

Note that this PRM is only two-dimensional, while the overall environment being planned over
is three-dimensional. This is possible because the third dimension, time, is related to the space
dimensions via velocity. This allows a transition model to be defined, as in [10]. Put briefly, each
state is allowed to transition to any at the same node but a greater time, remaining in place, or
to any node that is connected to the current node, with a time value greater than the current one
by at least the time needed to move between the nodes. Every such transition is tested against all
spacetime obstacles. If a intersection occurs, the transition is not allowed.

With the PRM constructed, and a state transition model defined, a modified A* search can be
performed. The agent’s current position and time are used as the beginning state for the search.
A randomly chosen goal position is generated, and a node, ngoal, is temporarily inserted into the
PRM. The goal state for the search sgoal is defined as the state (ngoal, tgoal ∗ k), where tgoal is the
minimum time it would take to reach the goal via a straight line, a k > 1 is a constant.

1The game is called “Jimstown”. A brief demonstration video can be found here: https://youtu.be/BHfTiUOVMjo
2More information about Unity can be found here: https://unity.com/
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The A* search is then run as usual, with several modifications. The search’s termination
condition is not reaching the goal state sgoal, but instead simply the goal’s node. The search
also monitors its running time and may terminate early if its runtime exceeds a preset value.
Additionally, the search is performed as weighted A*, so the f-value of state s is defined as f(s) =
g(s) + ε ∗ h(s), where ε > 1. This trades off search speed for its optimality - a valuable trade-off in
this environment. Also worth noting is that the g-cost and the h-cost both only consider the 2D
positions of the states, not their time values. This encourages the search to reach the goal in less
time, as the f-cost is not lowered by remaining in the same location.

3.2 Randomly-Exploring Random Tree

The structure of this approach is very similar to the structure of the basic RRT algorithm presented
in [2]. Unlike the PRM-based approach, an RRT requires practically no work to initialize - a state
is created for the agent’s current position and time, and is added to the RRT. A goal node is
randomly generated, and a window of time for reaching that goal [tgmin, tgmax] is computed.

The RRT is then grown step by step. Each step, a target state is randomly chosen. With a
chosen probability pgoal < 1 a goal state is generated at the goal node with a random time between
in the window [tgmin, tgmax]. Otherwise, a state is generated with a random location and a time
between the current time and tgmin. This random target state is then forced to be of a maximum
distance distance from its nearest neighbor, with an adequate amount of time to transition from
its neighbor, and to be of at least a minimum velocity. The target node is then connected to its
nearest neighbor in the RRT, but only if the connection does not intersect any spacetime obstacles.
The RRT algorithm terminates once its runtime exceeds a preset value or it has reached the goal
position.

3.3 Continuous Path Planning

For both approaches, the agent follows the generated path as closely as possible. If the agent
reaches its goal, next time it is asked for its desired velocity, the agent will re-run the path planning
algorithm with a new random goal. If at any point a new spacetime obstacle appears that intersects
the agent’s current path, the path is regenerated, aimed at the same goal.

4 Experiments and Results

The experiment conducted aimed to compare the two methods presented above, and evaluate them
on relevant metrics. As such, the experiment was designed to control as many variables as possible
between the two methods. Both path planning methods were run on a standard level of the game
under question that was designed before work on this paper began3. A few modifications were made
to this level to match the focus of this paper. Most notably, enemies that previously ’chased’ the
player in such a way as to try and crash into the player were forced to have a constant velocity. The
number of bullets fired by the enemies was also effectively increased to present a more thorough
challenge to the agents with a wider range of total number of obstacles on screen at any given time.

Due to the randomized nature of both approaches, 10 trials were run for each approach. The
runtime cap was set to 19 milliseconds to avoid impacting the game’s overall performance. The

3Here is a link to a demonstration video: https://youtu.be/PegbrTx9gwc
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PRM approach used a PRM with 1000 nodes, each with 30 connections, with an ε value of 10. The
RRT was run with a pgoal value of 0.15, a maximum tree extension length of 0.5, and a maximum
agent speed slowdown of 1.5x. The agent’s maximum speed was set to a value of 5, the same value
used for human players of the game.

For each trial, four values were recorded each time the path planning algorithm ran: the time the
run occurred at, the duration (runtime) of the algorithm in milliseconds, the number of obstacles
present for that run, and the length of the path (in number of nodes) planned by the algorithm.
The averages across the five runs per approach for the recorded values are shown for both the RRT
and the PRM in Figure 1.

Figure 1: Comparison of algorithm runtime, path length, and number of obstacles over time,
averaged over 10 trials

The total time survived by the agent was captured as an overall measure of success. The number
of times the agent reached the end of its path before more was generated was recorded as a measure
of how well the algorithm stayed ahead of execution. These instances will be referred to as ‘No
Goal’ occurrences, and will be measured as an average per second. As a final measure, the average
number of seconds it took for the agent to reach the randomly chosen goals was recorded as a
measure of path planning competence, instead of mere obstacle avoidance. These values are shown
comparing the PRM approach and the RRT approach in Table 1.

Time Survived (s) No Goals/s Average Seconds/Goal

PRM 45.0 0.766 4.35
RRT 42.5 1.866 5.29

Table 1: High-level results over 10 trials comparing the PRM and RRT methods

5 Analysis

Figure 1 shows several interesting trends. The first is a general increase in algorithm runtime as the
number of obstacles increases, alongside a general decrease in path length. This indicates that the
primary computational bottleneck, for both algorithms, is checking for obstacles collisions. This
finding was separately confirmed by the author using profiling techniques.
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It is also visible from Figure 1 that while the RRT continued to use its full runtime until
termination, the PRM often did not. This is really due to the fundamental nature of the PRM;
the agent’s choices are limited to those available on the graph. Thus, when the agent becomes
fully surrounded by obstacles, it only checks its current node’s connections for valid movements.
If none of these movements are valid, the search terminates early, not using its full allotment of
computation time. In contrast, the RRT has no limit to the number of transitions it can generate,
because each attempted addition to the RRT is a new random sampling of the search space. It
thus continues to attempt to find ways out of predicaments until the very end.

It is evident from Table 1 that the PRM outperformed the RRT across the board. On aver-
age, the PRM approach survived a little bit longer, had less than half the frequency of no goal
occurrences, and was more expedient at reaching its goals. What this really means is that the
PRM ultimately spent its time more efficiently than the RRT, doing computations most likely to
aid in the continued survival of the agent. This is once again due to the core purpose of a PRM:
limiting options. When the agent is fully surrounded, this may not be beneficial, but on the whole,
it evidently serves to focus the computations the agent performs in a way that ultimately proves
useful. Where an RRT randomly chooses points in the environment, hoping they prove helpful,
the PRM already has a set of neighbors to choose from. Moreover, the PRM-based approach is
more goal-oriented than the RRT-based approach because of its use of A*. It is always explicitly
searching for the goal. The RRT, in contrast, only attempts to move towards the goal with a certain
frequency. When an RRT is allowed to run its full course, this tends to work out. However, when
the RRT is frequently cut off because it does not have enough computation time, it’s possible that
it doesn’t even attempt to reach the goal for random periods of time.

6 Conclusions and Future Work

We have presented a comparison between two common approaches to motion planning when applied
to a spacetime context for a highly dynamic environment. The first approach is based upon the
concept of a probabilistic roadmap, generated once during initialization, which is then used as
a graph for an algorithm like A* to search over. The second approach utilizes the concept of
a rapidly exploring random tree, which has no need for a search algorithm; the very generation
of the RRT generates the path. It was found inside the context of a specific game, that the
PRM survived longer than, less frequently left the agent without an immediate task than, and
more quickly reached randomly generated goals than RRT. This difference likely stems from the
fundamental natures of the two algorithms, specifically, the deliberate limitations that serve to
focus the PRM-based approach.

Future work could include comparisons to other approaches to motion planning in dynamic
environments, such as one based on the concept of velocity obstacles, or perhaps one based on
potential fields. More extensive research could also be done into finding the optimal parameters
for each individual algorithm, as these may significantly impact those algorithm’s performance.
Additionally, versions of the PRM approach and the RRT approach exist that aim to reuse previous
computation so as to avoid needing to re-plan from scratch if the planned path becomes nonviable.
These could perhaps outperform the simpler versions of those algorithms implemented for this
paper.
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